Caenorhabditis elegans p97 controls germline-specific sex determination by controlling the TRA-1 level in a CUL-2-dependent manner.

نویسندگان

  • Yohei Sasagawa
  • Mieko Otani
  • Nahoko Higashitani
  • Atsushi Higashitani
  • Ken Sato
  • Teru Ogura
  • Kunitoshi Yamanaka
چکیده

p97 (CDC-48 in Caenorhabditis elegans) is a ubiquitin-selective AAA (ATPases associated with diverse cellular activities) chaperone and its key function is to disassemble protein complexes. p97 functions in diverse cellular processes including endoplasmic reticulum (ER)-associated degradation, membrane fusion, and meiotic and mitotic progression. However, its cellular functions in development have not yet been clarified. Here, we present data that p97 is involved in the switch from spermatogenesis to oogenesis in the germline of the C. elegans hermaphrodite. We found that the cdc-48.1 deletion mutant produced less sperm than the wild type and thus showed a decreased brood size. The cdc-48.1 mutation suppressed the sperm-overproducing phenotypes of fbf-1 and fem-3(gf) mutants. In addition, the p97/CDC-48-UFD-1-NPL-4 complex interacted with the E3 ubiquitin ligase CUL-2 complex via NPL-4 binding to Elongin C. Furthermore, TRA-1A, which is the terminal effector of the sex determination pathway and is regulated by CUL-2-mediated proteolysis, accumulated in the cdc-48.1 mutant. Proteasome activity was also required for the brood size determination and sperm-oocyte switch. Our results demonstrate that the C. elegans p97/CDC-48-UFD-1-NPL-4 complex controls the sperm-oocyte switch by regulating CUL-2-mediated TRA-1A proteasome degradation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MPK-1 ERK controls membrane organization in C. elegans oogenesis via a sex-determination module.

Tissues that generate specialized cell types in a production line must coordinate developmental mechanisms with physiological demand, although how this occurs is largely unknown. In the Caenorhabditis elegans hermaphrodite, the developmental sex-determination cascade specifies gamete sex in the distal germline, while physiological sperm signaling activates MPK-1/ERK in the proximal germline to ...

متن کامل

A sensitized genetic background reveals evolution near the terminus of the Caenorhabditis germline sex determination pathway.

Caenorhabditis elegans and Caenorhabditis briggsae are both self-fertile hermaphroditic nematodes that evolved independently from male/female ancestors. In C. elegans, FEM-1, FEM-2, and FEM-3 specify male fates by promoting proteolysis of the male-repressing transcription factor, TRA-1. Phenotypes of tra-1 and fem mutants are consistent with this simple linear model in the soma, but not in the ...

متن کامل

Analysis of the role of tra-1 in germline sex determination in the nematode Caenorhabditis elegans.

In wild-type Caenorhabditis elegans there are two sexes, self-fertilizing hermaphrodites (XX) and males (XO). To investigate the role of tra-1 in controlling sex determination in germline tissue, we have examined germline phenotypes of nine tra-1 loss-of-function (lf) mutations. Previous work has shown that tra-1 is needed for female somatic development as the nongonadal soma of tra-1(lf) XX mu...

متن کامل

Comparative genetics of sex determination: masculinizing mutations in Caenorhabditis briggsae.

The nematodes Caenorhabditis elegans and C. briggsae independently evolved self-fertile hermaphroditism from gonochoristic ancestors. C. briggsae has variably divergent orthologs of nearly all genes in the C. elegans sex determination pathway. Their functional characterization has generally relied on reverse genetic approaches, such as RNA interference and cross-species transgene rescue and mor...

متن کامل

Proteasomal ubiquitin receptor RPN-10 controls sex determination in Caenorhabditis elegans.

The ubiquitin-binding RPN-10 protein serves as a ubiquitin receptor that delivers client proteins to the 26S proteasome. Although ubiquitin recognition is an essential step for proteasomal destruction, deletion of the rpn-10 gene in yeast does not influence viability, indicating redundancy of the substrate delivery pathway. However, their specificity and biological relevance in higher eukaryote...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 122 Pt 20  شماره 

صفحات  -

تاریخ انتشار 2009